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1 Introduction

From a bird’s eye view, the capital allocation process consists of the following:

1. Form beliefs about the risk-adjusted returns of managers

2. Allocate capital to managers on the basis of these (and other) beliefs

3. Observe the managers’ go-forward return outcomes

4. Modify beliefs based on observed outcomes, and restart capital allocation loop

The aim of this paper is to think critically about Step 4: how exactly should observed return outcomes
update an investor’s beliefs? And how should these updated beliefs translate into a practical decision to
increase or decrease capital?

We offer investors a methodical, quantitative framework for addressing these questions. Oftentimes
investors rely on heuristics when deciding whether to cut capital (e.g., ‘cut capital if the manager loses more
than X%’). These heuristics are useful but leave important information on the table, and can result in
actions that are either too early or too late.

The actual decision to increase or decrease allocated capital (to a manager, strategy, or asset) will
ultimately be holistic rather than mechanical. It will take into account the environment, relative performance,
the portfolio’s other holdings and mandate, etc.; nevertheless, we believe our simple quantitative framework
can provide a helpful guidepost. We employ a similar framework in our own investment process to help
determine when a strategy should be upsized or downsized.

This exposition deliberately avoids jargon and assumes little prior knowledge. We begin by building
reader intuition for the core intellectual tool used to update beliefs given new evidence: Bayesian inference.

2 Bayesian Reasoning: A Revealing Example

In everyday life, we make probability judgments constantly, even if we don’t conceive our decision-making
in those terms. What is the likelihood I will enjoy reading the book, given that my friend recommended it?
What is the likelihood I will get the promotion, given that my boss enjoyed my presentation? What is the
likelihood we are compatible, given that my partner dislikes the Yankees?

Based on my innate preferences and accumulated life experience, I already have a view of how likely I
am to enjoy the book (e.g. it is fiction and I don’t normally enjoy fiction). My friend’s recommendation
is additional information. Is it enough to ‘tip the scales’ and make it worthwhile for me to read the book?
What is the right way to quantitatively trade off my prior views with this new information?
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Errors in judgment often arise from making this trade-off incorrectly. Consider the scenario below—which
many parents encounter—relating to diagnosis of food allergies in babies. Repeated studies have shown that
about 85% of doctors get the answer to this problem very wrong1.

1% of babies have peanut allergies. 80% of babies with peanut allergies get positive skin-test results.
10% of babies without peanut allergies also get positive skin-test results. Now suppose a baby gets a
positive skin-test result. What are the chances this baby actually has peanut allergies?

Most doctors reason that the baby’s chance of peanut allergies is between 70% and 80%. In reality, it is
about 7%! The 70%-80% number seems ‘intuitive’ if one doesn’t distinguish between these two statements:

IF the baby has allergies, THEN the test shows positive 80% of the time. (1a)

IF the test shows positive, THEN the baby has allergies 80% of the time. (1b)

The problem states (1a) is true, and it can be tempting to conclude that therefore (1b) is approximately
correct. To see clearly that this reasoning is flawed, consider the pair of statements below:

IF it is snowing, THEN it is winter 95% of the time. (2a)

IF it is winter, THEN it is snowing 95% of the time. (2b)

On the East Coast, (2a) is accurate, but (2b) is far from accurate: only a small minority of days in winter
have snowfall2. Analogously, (1b) is inaccurate because only a small minority of positive skin-test results
come from babies with allergies. This is because the test yields false positives 10% of the time on the large
set of babies (99% of the population) who do not have allergies.

How do we correctly calculate the percentage in ‘flipped’ statements like (1b) from statements like (1a)?
The key is Bayes’ Theorem; it is a powerful tool for backing out ‘the chance of X given Y’ from ‘the chance of
Y given X’ and a couple of other pieces of information. Specifically, letting Prob(X) denote the probability
of X, and Prob(X |Y ) denote the probability of X given Y, the theorem shows that

Prob(X |Y ) = Prob(Y |X) · Prob(X)

Prob(Y )
(B1)

In the allergy problem context, X is having allergies and Y is a positive skin-test result. The problem
statement tells us the quantities on the right hand side of (B1). We are told Prob(X), the percentage of
babies with allergies, is 1%. We are also told Prob(Y |X), the percentage of babies who get positive test
results given they have allergies, is 80%. Lastly, Prob(Y ), the percentage of babies with positive tests, is
(80% · 1% + 10% · 99%) = 10.7%, i.e., 80% positives from the 1% of the population with allergies and 10%
positives from the 99% of the population without allergies. Putting these into (B1) gives a value of 7.4% for
Prob(Y |X), the percentage of babies who have allergies given a positive test result.

You can verify the arithmetic in (B1) works by imagining a specific number of babies, say 10,000. Then
100 babies (1% of 10,000) have allergies and the remaining 9,900 have no allergies. Out of the 100 with
allergies, 80 get positive skin-tests. And out of the 9,900 with no allergies, 990 get positive skin-tests (10%
false positives). So a total of 80+990 = 1,070 babies screen positive. Of these positives, only 80 actually
have allergies. So, the percentage of babies with allergies among those who test positive is 80/1070 = 7.4%.

Bayes’ Theorem thus provides a way to quantitatively combine prior views—e.g., 1% of babies have peanut
allergies—with new information—e.g., this baby got a positive test result—to form updated beliefs—e.g., the
chance this baby has allergies increased from 1% to 7.4%.

1See e.g. Casscells, W., Schoenberger, A., and Grayboys, T. (1978): “Interpretation by physicians of clinical laboratory
results.” New England Journal of Medicine 299:999-1001.

2Less than 10% of winter days in Manhattan get snow.
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3 States of the World

In the allergy problem, there are only 2 possible states of the world: the baby either has allergies or she
doesn’t. Our belief prior to observing the positive test result is a probability of 1% on the former state and
99% on the latter state.

Let’s now move to a portfolio management setting, where there will inevitably be more than 2 states.
Suppose we are allocating capital to a strategy3 and believe its go-forward Sharpe Ratio4 is between -2 and
2. We conduct investment diligence and this leads us to form the beliefs shown in Figure 1. Specifically, we
believe there is a 60% chance the strategy is a Sharpe of 1, a 15% chance it is a Sharpe of 0, etc. Note that
the weights on the 5 Sharpe Ratio states5 add to 100%.

Figure 1: Prior Beliefs For Strategy Sharpe Ratio
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Figure 2: Strategy Returns Post-Allocation
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Having formed these beliefs, we allocate capital to the strategy and monitor its performance. One year
later, the strategy—run at 10% annualized volatility—produces the returns in Figure 2. The strategy loses
8% and realizes a Sharpe Ratio of -0.8 over the sample window.

Is this window long enough to make definitive conclusions? How should the original beliefs in Figure 1
be revised given the post-allocation performance in Figure 2? Intuitively, because the strategy loses money,
there should now be less weight given to Sharpes of 1 and 2, and more weight given to the lower Sharpe
Ratio states. The weights in Figure 1 can be updated by utilizing the exact same procedure used for
the allergy problem—Bayes’ Theorem (B1). The resulting updated beliefs are shown in Figure 3.6

The shifts in weights from Figure 1 to Figure 3 are mostly intuitive. There is almost no chance now that
the strategy is a Sharpe of 2. There is a 30% chance it is a Sharpe of 0 and over 25% chance the strategy is
a Sharpe of -1. This makes sense given it realized a Sharpe of -0.8 over 1 year. The weighted average of the
Sharpe Ratios is -.05; we therefore believe the strategy is a money loser going forward.

At first glance it may seem surprising that a Sharpe of 1 in Figure 3 is assigned greater than 30% weight,
given the strategy’s negative performance. This occurs primarily because we originally assigned a large 60%
weight to the Sharpe Ratio 1 state (see Figure 1). If, instead of the weights in Figure 1, we had assigned an
equal 20% chance to each of the 5 states, then our updated beliefs would be those shown in Figure 4.

3Everything we say applies equally well to allocation to a manager or to an asset.
4This is the ratio of annualized expected return to annualized volatility. We ignore risk free rate.
5We could just as easily have divided the interval into more than 5 buckets (resulting in more states) or widened the interval.
6Please see Appendix for details of applying equation (B1) to get Figure 3.
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Figure 3: Updated Beliefs
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Figure 4: Updated Beliefs Given Equal-Weighted Prior
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As Figure 4 shows, starting from equal-weighted prior beliefs across states, there is less than 10% chance
the strategy is a Sharpe of 1. The largest weight is on a Sharpe of -1, which is close to the realized Sharpe
of -0.8. The takeaway is not that the prior beliefs in Figure 1 are bad, or that placing 20% weight on
the 5 states is better; instead, the moral is that updated beliefs are sensitive to the specification of prior
beliefs. Ultimately, updated beliefs combine prior beliefs with realized performance. The longer the realized
performance window, the more that updated beliefs will align with realized results; and the shorter the
window, the more they will align with prior views.

In practice, then, we need a robust method for specifying prior views, one that minimizes psychological
biases and arbitrariness. We also need to be able to quickly reduce risk in a strategy, without having to wait
for a long realized performance window. We address both of these points in the next section.

4 Operationalizing the Framework in Practice

In the preceding section, we analyzed a simplified setup with 5 states of the world. Each state corresponded
to a static Sharpe Ratio. In reality, Sharpe Ratios change over time. An initially high Sharpe strategy
can decay to a lower Sharpe as more traders exploit the same signal7. For example, daily mean reversion
strategies in equities were high Sharpe until 2010, when more capital deployed and lower barriers to entry
(due to better technology) caused a structural decay in Sharpe.

To reflect potential alpha decay, we can make our states dynamic rather than static. Figure 5 shows
states with Sharpe Ratios that change over time. In the Figure, state S1 is a constant Sharpe of 1.5 across
time, static like the 5 states in the previous section. In contrast, the other two states are dynamic. State S2

is a Sharpe of 1.5 for a period of time (1 year), after which it decays to 0 instantaneously and stays there.
State S3 is initially a Sharpe 1.5 and decays to 0 exponentially (with a 1 year half-life).

With such dynamic states, we can detect decay in realized performance much more quickly8. The frame-
work gives us wide latitude in specifying states of the world, so long as the prior weights on the states sum
to 100%. This then raises the practical question: if we include dynamic states like S2 and S3 (and poten-
tially dozens more) for a given strategy, how should we select prior weights for these states? The number of
required decisions is now much larger, and so is the room for arbitrariness.

This problem of selecting states and weights for a strategy can be transformed into the much simpler
problem of categorizing the strategy. Specifically, we can identify base strategy types and choose natural

7That’s why a robust research process that regularly produces new signals is key to avoiding alpha decay.
8The calculations in the Appendix can be readily modified to accomodate dynamic Sharpe Ratio states.
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Figure 5: States With Time-Varying Sharpe
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dynamic states for these base types. Then, whenever a new strategy comes along, we can map it to one or
more base type and have it inherit the corresponding states and weights.

Figure 6 shows the particular strategy types we use in our implementation. Note the differences between,
for instance, strategy types 1 and 2. Risk premia strategies—e.g., carry and value—tend to have lower
Sharpe ratios and are usually slower to decay. In contrast, information-edge strategies—e.g., ones relying on
proprietary data sources—tend to have higher Sharpe ratios and are susceptible to instantaneous decay at
some random point in the future (when the proprietary data source becomes popular, for example). Each
type, by its nature, has its own range of applicable states. We keep proprietary the exact configuration of
states that we use; it has been calibrated by observing the behavior of hundreds of strategies over time.

Figure 6: Alpha Types

1. Structural Anomaly / Risk Premium
Intuition Makes money by providing liquidity or taking on risk correlated with market
Examples Carry strategies; Put selling; Value strategies
Starting Sharpe Ranges from 0.2 to 0.6
Decay Speed Generally does not decay

2. Information or Friction-Based Alpha
Intuition Makes money via proprietary data, technology barriers, or trading in new market
Examples Mobile phone geolocation data
Starting Sharpe Can be above 1, with wide distribution based on exclusivity of access
Decay Speed Decays abruptly to 0 at some future point (e.g. when data becomes public)

3. Modeling-Based Alpha
Intuition Makes money through superior modeling, analytics or choice of instruments
Examples Cross asset-class lead-lag strategies
Starting Sharpe Can be above 1, with wide distribution
Decay Speed Decays exponentially to 0 with some half-life as other participants catch on

4. Data Mining
Intuition Appears to make money historically or backtested, but alpha is actually illusory
Examples A technical strategy which backtests well due to data mining / over-fitting
Starting Sharpe Centered at 0
Decay Speed Decays immediately to 0
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To see how this comes together in practice, suppose we are allocating capital to a new strategy. The
strategy tactically trades small-cap vs large-cap stocks, long-short balanced. It is long small-caps most of the
time and uses a mix of company-specific and macroeconomic data as drivers. Through investment diligence,
we determine that the strategy is 50% Risk Premium (since it is mostly long small caps), 10% information
edge (in using company-specific information), 25% modeling edge (in using macroeconomic information),
and 15% data mining (potentially getting lucky historically given a small number of inflection points).

Determining these four percentages is all that is required to operationalize the framework. From there,
the collection of states and the prior weights applicable to the strategy are implied automatically, as we
have already configured dynamic states for each of the 4 canonical strategy types. We can now observe
the strategy’s realized performance and update our beliefs using Bayes’ Theorem (B1), reducing risk as our
updated beliefs dictate.

Note that mapping a strategy to base types not only makes it easier to select states and prior beliefs
for that particular strategy; it also makes it easier to be consistent across multiple strategies, increasing
objectivity. Ultimately, it makes operating the framework robust and interpreting its results intuitive.

5 Conclusion: Bayes Rule and Drawdown Rule

This paper focused on Step 4 of the capital allocation loop sketched in the Introduction: how to modify
beliefs based on observed outcomes. We have seen that Bayes’ Theorem is a powerful tool for updating
beliefs, applicable as much to allergy probabilities given positive skin-tests as to Sharpe Ratio probabilities
given realized performance.

There are two obvious obstacles to implementing the framework in practice. Specifically: (1) it can
require a long realized performance window to identify deterioration, and (2) updated beliefs are sensitive to
prior beliefs. We have shown how to address both of these via dynamic states and canonical strategy types.
The result is a robust, consistent framework capable of quickly detecting alpha decay.

This framework complements heuristics such as drawdown rules. These rules are easy to interpret and
do not depend on prior beliefs. However, they do not help with strategies that decay to flat without major
losses. Moreover, they leave information on the table, unable to distinguish poor outcomes which are bad
luck from those which strongly challenge prior expectations.

Ultimately, the capital allocator should leverage both a drawdown rule and Bayes’ rule. The decision
to retire a strategy can have significant impact on a portfolio’s bottom line. Giving up on a strategy too
soon will result in paying unnecessary fixed costs (e.g. time spent developing a new strategy or hiring a new
manager) while acting too late risks further poor performance. Any tool that helps the allocator improve
this tradeoff can drive significant portfolio alpha.
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Appendix

We show how to apply equation (B1) to calculate updated beliefs in Figure 3 from prior beliefs in Figure 1
and observed strategy returns in Figure 2.

Let S1, S2, S3, S4, S5 denote the 5 Sharpe Ratio states (-2,-1,0,1,2), and let R = {r1, r2, . . . , r251} denote
the 251 observed daily returns in Figure 2. We’ll focus initially on updating our belief in S1, the state of the
world in which the strategy is a Sharpe Ratio -2.

We started from the view (depicted in Figure 1) that S1 has a 5% chance of being true. Now that we’ve
observed R, we need to revise this 5% number. In other words, we want to calculate Prob(S1|R). From
equation (B1) we have

Prob(S1|R) = Prob(R|S1) · Prob(S1)
Prob(R)

(A1)

Observe that Prob(R) is a fixed number that does not vary across the 5 states. Hence, we can write (A1) as

Prob(S1|R) ∝ Prob(R|S1) · Prob(S1), (A2)

where ‘∝’ means ‘proportional to’. The probabilities of the 5 states add to 100%, i.e.,

Prob(S1|R) + Prob(S2|R) + Prob(S3|R) + Prob(S4|R) + Prob(S5|R) = 100%.

Thus, we can calculate the right hand side of (A2) for each of the 5 states and then rescale so the sum is
100%. Below we evaluate the quantities on the right hand side of (A2). We assume that daily returns R
are normally distributed and independent across time. This assumption and the corresponding calculations
below can be readily modified.

From Figure 1, we have Prob(S1) = 5%. Next, the term Prob(R|S1) means the probability of observing
R assuming that S1 is true. In a world where S1 is true, the strategy has an expected annual return of -20%
(because it has a Sharpe of -2 and an annualized volatility of 10%). This translates into a daily expected
return of -20%/251 = -.08%. Further, the annualized volatility of 10% translates into a daily volatility of
10%/

√
251 = 0.6%. Thus, in a world where S1 is true, the daily returns R are normally distributed with a

mean µ of -.08% and a standard deviation σ of 0.6%. From the normal density function, the likelihood of
observing R is then

Prob(R|S1) =

(
1√
2πσ2

)251

· exp

− 1

2σ2

251∑
j=1

(rj − µ)2




We repeat this calculation and plug the results into (A2) for each of the 5 states to arrive at the updated
beliefs depicted in Figure (3).
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Important Notes

The information in this document does not constitute an offer to sell or a solicitation of an offer to purchase
any securities of any entities described herein. Any such offer will be made solely to qualified investors by
means of private placement memoranda and related subscription materials. Investors should rely on such
memoranda, and not this report, in connection with a purchase of any such securities. The information in
this document should not be taken as a recommendation to purchase or sell any particular security.

The strategies described herein are speculative and involve substantial risks, including risk of loss.

Information in this document is as of the date indicated. The author assumes no duty to update the analyses
contained herein.
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